Программа и первые физические результаты эксперимента ВМ@N на ускорительном комплексе НИКА/Нуклотрон

<u>В.Плотников от имени</u> коллаборации BM@N

ЛФВЭ, ОИЯИ, Дубна, Россия

Joint Institute for Nuclear Research

SCIENCE BRINGING NATIONS TOGETHER Научная сессия секции ядерной физики ОФН РАН, Дубна, Россия 5.04.2024

- 1. Физическая программа ВМ@N
- 2. Физические результаты по образованию π^+ и K^+ -мезонов
- 3. Физические результаты по образованию p, d и t
- 4. Первые результаты анализа сеанса на пучке Хе
- 5. Планы на следующие сеансы

Эксперименты по столкновению тяжёлых ионов Вм

Уравнение состояния симметричной и асимметричной ядерной материи

Ch. Fuchs and H.H. Wolter, EPJA 30 (2006) 5

УС: соотношение между плотностью, давлением, температурой, энергией и изоспиновой асимметрией

 $\mathsf{E}_{\mathsf{A}}(\rho,\delta) = \mathsf{E}_{\mathsf{A}}(\rho,0) + \mathsf{E}_{\mathsf{sym}}(\rho) \cdot \delta^2$

with $\delta = (\rho_n - \rho_p)/\rho$

Кривизна определяется несжимаемостью ядерной материи: К = 9p² d²(E/A)/dp²

- ► Изучение УС симметричной материи при ρ=3-5р₀
- → Эллиптические потоки протонов, мезонов и

гиперонов

- → подпороговое образование странных мезонов и гиперонов
- → извлечение К из предсказаний моделей
- ▶ Ограничения на энергию симметрии Е_{sym}
- → эллиптические потоки нейтронов относительно протонов
- → подпороговое образование частиц с противоположным изоспином

Образование π⁺ и К⁺-мезонов в аргон-ядерных взаимодействиях с энергией пучка 3.2 АГэВ на Нуклотроне

В.Плотников от имени коллаборации ВМ@N

Образование р в аргон-ядерных взаимодействиях с энергией пучка 3.2 АГэВ

- Спектр dN/dy мягче для более тяжёлых мишенией
- Предсказания DCM-SMM и PHQMD недооценивают данные в области центральных быстрот
- Максимум <m_t> при центральной быстроте у*
- Предсказания DCM-SMM и PHQMD описывают <m_t>-зависимость по у

Образование d в аргон-ядерных взаимодействиях с энергией пучка 3.2 АГэВ

- Спектр dN/dy мя́гче для более тяжёлых мишенией
- Предсказания DCM-SMM и PHQMD описывают форму данных, но меньше по нормировке примернов в 4 раза
- Максимум <m_t> при центральной быстроте у*
- Предсказания PHQMD лучше согласуются с данными при центральной быстроте, чем DCM-SMM

Образование t в аргон-ядерных взаимодействиях с энергией пучка 3.2 АГэВ

- (GeV) Ar+C→t+X, cent<40% 0.3 BM@N preliminary - DCMSMM - PHOMD Ē 0.2 <m>> 0.1 Ar+Cu→t+X, cent<40% BM@N preliminary 0.4 - DCMSMM PHOMD 0.3 0.2 0.1 Ar+Pb→t+X, cent<40% 0.6 BM@N preliminary DCMSMM 0.5 PHQMD 0.4 0.3 0.2 0.1 0.8 1.2 1.6 1.8 y 1.4
- Предсказания PHQMD лучше описывают форму данных, чем DCM-SMM, но предсказания обеих моделей меньше по нормировке примерно в 6 раз
- РНQMD предсказывает более высокие <m_t> при центральной быстроте, чем DCM-SMM, и лучше согласуется с данными

Ar+C <y(π)> = 1.27 Ar+Pb <y(π)> = 0.82

BM@N

Фит <m₊>-зависимости для p, d, t

 $\begin{array}{l} \langle m_t \rangle - m \approx E_{therm} + E_{flow} = \\ &= 3/2 \ T^* + (\gamma - 1)m \\ &\text{где } \gamma = 1/\sqrt{1 - \langle \beta \rangle^2} \end{array} \\ T^* = T \ \sqrt{(1 + \langle \beta \rangle)/(1 - \langle \beta \rangle)} \end{array}$

НАDES Au+Au при √s= 2.4 GeV: T = 66±8 MeV и $<\beta>$ = 0.34±0.02 (энергия ниже, но ядра тяжелее) NA49 (Pb+Pb) и STAR (Au+Au) при более высоких энергиях: T~ 95-110 MeV, < β > ~ 0.46

Reaction	Ar+C	Ar+Al	Ar+Cu	Ar+Sn	Ar+Pb
T, MeV	89 ± 3	76 ± 8	80 ± 5	74 ± 9	80 ± 10
<β>	0.0±0.04	0.26±0.05	0.27±0.03	0.30±0.4	0.26±0.5

Факторы коалесценции В₂ (дейтроны), В₃ (тритоны)

$$E_A \frac{d^3 N_A}{dp_A^3} = B_A \left(E_p \frac{d^3 N_p}{dp_p^3} \right)^Z \left(E_n \frac{d^3 N_n}{dp_n^3} \right)^{A-Z}$$
$$\approx B_A \left(E_p \frac{d^3 N_p}{dp_p^3} \right)^A, \quad B_A \propto V_{\text{eff}}^{1-A}$$

В_А – параметр коалесценции, который характеризует вероятность формиро-вания

5.04.2024

 $\rightarrow B_A = d^2 N_A / 2\pi p_T dp_T (A) dy / [d^2 N_p / 2\pi p_T dp_T (p) dy)]^A, A=2(d), 3(t)$ В_A зависит от массового числа ядра A, сталкивающейся системы, централь-ности, энергии и поперечного импульса

Факторы коалесценции B_2, B_3

Результаты для B₂ и B₃ во взаимодействиях Ar+A (центральность 0-40%) совместимы с энергетической зависимостью соответствующих факторов, полученных в центральных взаимодействиях тяжёлых ядер.

Значения $B_2(p_T)$ и $B_3(p_T)$ экстраполированы к $p_T = 0$ с использованием экспоненциального фита $B_A(p_T=0)exp(a \cdot p_T)$.

Отношение $N_p N_t / N_d^2$

Reaction	Ar+C	Ar+Al	Ar+Cu	Ar+Sn	Ar+Pb
$N_p \cdot N_t / N_d^2$	0.53 ± 0.10	0.55 ± 0.09	0.69 ± 0.11	0.60 ± 0.07	0.59 ± 0.06

Центральность 0-40%, Из dN/dy для p,d,t в -0.18 < y* < 0.62

ВМ@N: Средневзвешенное значение N_p·N_t/N²_d ~ 0.60 ± 0.10 для Ar+C,Al,Cu,Sn, Рb взаимодействий

Сравнение с результатами AGS, FOPI, STAR

Результаты BM@N соответствуют общей зависимости данных при меньших и больших энергиях

STAR Collaboration: [nucl-ex] arXiv:2311.11020

Xe+CsI: полный аксептанс детекторов

- Полная конфигурация установки
 - На рассмотрении в NIM статья по установке BM@N для конфигурации в Xe+CsI сеансе
- Набрано 507М событий при 3.8 АГэВ, 48М событий при 3.0 АГэВ

Xe+CsI: полный аксептанс детекторов

В 500М событиях ожидается: 4М ^л, 1.2М ^к_s и 8К ^{±-}

 Оценки времён жизни, полученные из эксперимента согласуются с табличными значениями для Л⁰ (0.2632 нс) и К⁰_s (0.0895 нс)

5.04.2024

В.Плотников от имени коллаборации BM@N

Xe+CsI: идентификация и центральность в 🥮

тальными данными

Физический сеанс в пучке ксенона:

- → сканирование по энергии пучка в диапазоне 2-3 АГэВ
- → та же конфигурация центрального трекера, основанная на кремниевых и GEM-детекторах
- → дополнительная 1^{ая} вершинная плоскость кремниевых детекторов
- → полная замена внешних дрейфовых камер на катодно-стриповые камеры
- → расширение время-пролётной системы ToF-400

Подготовка к физическому сеансу с пучком Ві

- Планируется дальнейшее развитие центрального трекера: установка дополнительных станций кремниевых детекторов
- Планируется запустить в работу 2-координатный (Х/Ү) нейтронный детектор высокой гранулярности для измерения выходов и коллективных потоков нейтронов

Актуальность

Уравнение состояния ядерной материи при высоких плотностях Образование частиц при (под)пороговых энергиях через множественные последовательные столкновения Пример: подпороговое рождение K⁺ в GSI

Идея: выходы К⁺ ~ плотность ~ сжимаемость

5.04.2024

В.Плотников, по материалам канд. диссертации

Спектры по у π^+ -мезонов

5.04.2024

И

Спектры по у К⁺-мезонов

Усы представляют статистические погрешности, прямоугольники показывают систематические погрешности. Предсказания моделей DCM-SMM, UrQMD и PHSD показаны в виде красных, зелёных и фиолетовых линий.

Инвариантные *p*_т-спектры π⁺-мезонов в @

 $1/p_T \cdot d^2 N/dp_T dy = C \cdot exp(-(m_T - m_{\pi,K})/T_0)$

где $m_T = \sqrt{(m_{\pi,K}^2 + p_T^2)}$ – поперечная масса, *C* – нормировка (свободный параметр), T_0 – обратный наклон (свободный параметр), *dy* – ширина измеренного бина по *y*, dp_T – ширина измеренного бина по p_T .

5.04.2024

В.Плотников, по материалам канд. диссертации

Инвариантные p_{τ} -спектры К⁺-мезонов

Усы представляют статистические погрешности, прямоугольники показывают систематические погрешности. Результаты фитирования показаны в виде красных кривых.

Инвариантные *p*_т-спектры К⁺-мезонов @

Измеренная область по быстроте. Результаты фитирования показаны в виде красных кривых.

Параметры обратного наклона $T_{_{O}}\pi^{+}$

Усы представляют статистические погрешности, прямоугольники показывают систематические погрешности. Предсказания моделей DCM-SMM, UrQMD и PHSD показаны в виде красных, зелёных и фиолетовых линий.

Параметры обратного наклона $T_{o} \, \mathrm{K}^{+}$

Усы представляют статистические погрешности, прямоугольники показывают систематические погрешности. Предсказания моделей DCM-SMM, UrQMD и PHSD показаны в виде красных, зелёных и фиолетовых линий.

В.Плотников, по материалам канд. диссертации

 $T_{_{eff}}$ показан для диапазона поперечных импульсов в области, измеренной <u>BM@N</u> .

Взаимод. ядра / Кинет. энергия пучка / Эксперимент	$T_{eff} \text{ at } y^* = 0 \text{ (World),}$ $y^* \approx 0.5 (\pi^+, \underline{BM@N}),$ $y^* \text{ in meas. range (K^+, BM@N)}$
<i>Ar+KCl</i> , 1.76 АГэВ, HADES	82.4 \pm 0.1 ^{+9.1} _{-4.6} (π , A _{part} = 38.5) 89 \pm 1 \pm 2 (K ⁺ , A _{part} = 38.5)
<i>Ni+Ni</i> , 1.93 АГэВ, FOPI	110.9±1.0 (<i>K</i> ⁺ , A _{part} = 75)
<i>Ni+Ni</i> , 1.93 АГэВ, KaoS	97±7 (K^+ , $A_{part} \sim 5$) 107±10 (K^+ , $A_{part} \sim 100$)
<i>Ar+Cu</i> , 3.2 АГэВ, ВМ@N	90±2 (π^+ , A_{part} = 33.6) 81±5 (K^+ , A_{part} = 33.6)
<i>Ar+Sn</i> , 3.2 АГэВ, ВМ@N	92±2 (π^+ , $A_{part} = 48.3$) 81±5 (K^+ , $A_{part} = 48.3$)

 π^+ multiplicity per the mean number of nucleons-participants A_{part} shown as a function of the beam kinetic energy E_{beam} . The BM@N results are compared with the world measurements.

Образование p, d в аргон-ядерных взаимодействиях с энергией пучка 3.2 АГэВ

Факторы и радиус коалесценции B₂, B₃, R_{coal}

Радиус источника коалесценции R_{coal} вычислен с использованием значений $B_2(p_T=0)$ и $B_3(p_T=0)$ для d и t.