A reconstruction and directed flow measurements for BM@N Run8

V. Troshin, M. Mamaev, P. Parfenov, A. Taranenko

Motivation

Yasushi Nara et al. *EPJ Web Conf.* 276 (2023) 01021 Yasushi Nara et al. *EPJ Web Conf.* 271 (2022) 08006 Yasushi Nara et al. *Phys.Rev.C* 106 (2022) 4, 044902 Strong repulsive Λ potential U_{Λ} that is predicted by Λ chiral effective field theory(χ EFT) may explain the existence of two-solar-mass neutron stars by suppressing Λ in dense nuclear matter by Λ -N-N three-body interactions, and directed flow of Λ is expected to constrain U_{Λ} .

The picture shows the dv_1/dy slope of Λ for different potentials and comparison with STAR data. MD2 and MD3 is a different momentum dependences for U_{Λ} , GKW3 denotes a three-body interactions of Λ . It is shown that three-body interactions in JAM model with mean-field mode gives the best agreement with STAR data, especially for lower energy.

Anisotropic transverse flow

Spatial asymmetry of energy distribution at the initial state is transformed, through the strong interaction, into momentum anisotropy of the produced particles.

$$egin{aligned} Erac{d^3N}{d^3p} &= rac{1}{2\pi} rac{d^2N}{p_T dp_T dy} (1 + \sum_{n=1}^\infty 2 v_n \cos(n(\phi - \Psi_{RP}))) \ & \bigvee \ & v_n &= \langle \cos(n(\phi - \Psi_{RP}))
angle \end{aligned}$$

In the experiment reaction plane angle Ψ_{RP} can be approximated by participant Ψ_{PP} or spectator Ψ_{SP} symmetry planes.

A hyperon reconstruction and directed flow measurements $\Lambda \rightarrow p + \pi$

- 1. Centrality and track selection
- 2. Build Λ positive charges as p, negative charges as π^-
- 3. Selection with Particle Finder software
- 4. Fitting the m_{inv} distributions
- 5. Obtain R₁
- 6. Fitting v_1 as a function of m_{inv}

$$v_1^{SB}(m_{inv}, p_T) = v_1^S(p_T) \frac{N^S(m_{inv}, p_T)}{N^{SB}(m_{inv}, p_T)} + v_1^B(m_{inv}, p_T) \frac{N^B(m_{inv}, p_T)}{N^{SB}(m_{inv}, p_T)} \bullet \text{PV}$$
 — primary vertex

- V_0 vertex of hyperon decay
- dca distance of closest approach

V₀

 dca_{V_0}

π

• path — decay length

path

dca_p

dca,

PV

 $\vec{p}_{\Lambda} = \vec{p}_{D} + \vec{p}_{\pi}$

Centrality and track selection

- Entire of the recent VF production was analysed
- Event selection criteria:
 - CCT2 trigger
 - Pile-up cut
 - Number tracks for vertex > 1
 - Track selection criteria : $\chi^2/ndf > 0.5$; Nhits > 5

Cut's dictionary

χ^2 prim(1;2)	dca	L	L/dL	x ² geo	χ ² topo	cos_topo
χ^2 of daughter particle to primary vertex	Distance between daughter tracks in their closest approach	Length of interpolated track from secondary to primary vertex	Distance between primary and secondary vertices divided by error	χ^2 of daughters' tracks in their closest approach	χ^2 of the mother's track to the primary vertex	Cosine of the angle between reconstructed mother's momentum and mother's radius vector beginning in the primary vertex

χ ² (p)>10	dca<0.7 cm	L>1 cm	L/dL>6	χ^2 geo <30	χ^2 topo <40	cos_topo>0.999
χ ² (pi)>200						

Flow vectors

From momentum of each measured particle define a u_n -vector in transverse plane:

$$u_n=e^{in\phi}$$

where $\boldsymbol{\phi}$ is the azimuthal angle

Sum over a group of u_n -vectors in one event forms Q_n -vector:

$$Q_n = rac{\sum_{k=1}^N w_n^k u_n^k}{\sum_{k=1}^N w_n^k} = |Q_n| e^{in \Psi_n^{EP}}$$

 Ψ_n^{EP} is the event plane angle

Flow methods for v_n calculation

Tested in HADES:

M Mamaev et al 2020 PPNuclei 53, 277–281 M Mamaev et al 2020 J. Phys.: Conf. Ser. 1690 012122

Scalar product (SP) method:

$$v_1 = rac{\langle u_1 Q_1^{F1}
angle}{R_1^{F1}} \qquad v_2 = rac{\langle u_2 Q_1^{F1} Q_1^{F3}
angle}{R_1^{F1} R_1^{F3}}$$

Where R_1 is the resolution correction factor

$$R_1^{F1}=\langle \cos(\Psi_1^{F1}-\Psi_1^{RP})
angle$$

Symbol "F2(F1,F3)" means R₁ calculated via (3S resolution):

$$R_1^{F2(F1,F3)} = rac{\sqrt{\langle Q_1^{F2}Q_1^{F1}
angle \langle Q_1^{F2}Q_1^{F3}
angle}}{\sqrt{\langle Q_1^{F1}Q_1^{F3}
angle}}$$

Method helps to eliminate non-flow Using 2-subevents doesn't

Symbol "F2{Tp}(F1,F3)" means R₁ calculated via (4S resolution):

$$R_1^{F2\{Tp\}(F1,F3)} = \langle Q_1^{F2}Q_1^{Tp}
angle rac{\sqrt{\langle Q_1^{F1}Q_1^{F3}
angle}}{\sqrt{\langle Q_1^{Tp}Q_1^{F1}
angle \langle Q_1^{Tp}Q_1^{F3}
angle}}$$

Azimuthal asymmetry of the BM@N acceptance

 ϕ yield of Λ candidates

Non-uniform acceptance - corrections are required

Corrections are based on method in: I. Selyuzhenkov and S. Voloshin PRC77, 034904 (2008)

2. Twist

3. Rescaling

Fitting the m_{inv} distributions in p_T -y bins

Fitting the m_{inv} distributions of v_1

$$v_1^{SB}(m_{inv},p_T) = v_1^S(p_T) rac{N^S(m_{inv},p_T)}{N^{SB}(m_{inv},p_T)} + v_1^B(m_{inv},p_T) rac{N^B(m_{inv},p_T)}{N^{SB}(m_{inv},p_T)}$$

$$v_1^{S}$$
 - have to find v_1^{B} - pol1

centrality: 10-30% p_T 0.5-1 GeV/c y_{CM} 0.4-0.6

Symmetry plane resolution and systematics

All the estimations for symmetry plane resolutions are in a good agreement

 $v_1(y)$ of Λ , 10-30%, 0.4< p_T <2 GeV/c

Good agreement for first "raw" results TO DO:

- 1. An increase of number of bins
- 2. Calculate the efficiency
- 3. Study of run-by-run dependences of selection criteria
- 4. Analysis of systematics

5.

BACKUP

 $v_1(p_T)$ of Λ

p_T -y distribution of Λ candidates

Anisotropic transverse flow in heavy-ion collisions at Nuclotron-NICA energies

Strong energy dependence of dv_1/dy and v_2 at $\sqrt{s_{NN}} = 2-11$ GeV.

Anisotropic flow at FAIR/NICA energies is a delicate balance between:

- The ability of pressure developed early in the reaction zone
- Long passage time (strong shadowing by spectators).

Differential flow measurements $v_n(\sqrt{s_{NN}}$, centrality, pid, p_T, y) will help to study:

- effects of collective (radial) expansion on anisotropic flow
- interaction between collision spectators and produced matter
- baryon number transport

M. Abdallah et al. [STAR Collaboration] 2108.00908 [nucl-ex]